Abstract

BackgroundNatural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, although how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. Here, we investigated the role of two natural IgM monoclonal Abs (mAbs), B4 and C2, that recognize post-ischemic neoepitopes following ischemia and reperfusion in other tissues.MethodsIdentification of post-SCI expressed neoepitopes was examined using previously characterized monoclonal Abs (B4 and C2 mAbs). The role of post-SCI neoepitopes and their recognition by natural IgM Abs in propagating secondary injury was examined in Ab-deficient Rag1−/− or wild type C57BL/6 mice using Ab reconstitution experiments and neoepitope-targeted therapeutic studies, respectively.ResultsAdministration of B4 or C2 mAb following murine SCI increased lesion size and worsened functional outcome in otherwise protected Ab-deficient Rag1−/− mice. Injury correlated with colocalized deposition of IgM and C3d in injured spinal cords from both mAb reconstituted Rag1−/− mice and untreated wild-type mice. Depletion of peritoneal B1 B cells, a source of natural Abs, reduced circulating levels of IgM with B4 (annexin-IV) and C2 (subset of phospholipids) reactivity, reduced IgM and complement deposition in the spinal cord, and protected against SCI. We therefore investigated whether the B4 neoepitope represents a therapeutic target for complement inhibition. B4-Crry, a fusion protein consisting of a single-chain Ab derived from B4 mAb, linked to the complement inhibitor Crry, significantly protected against SCI. B4-Crry exhibited a dual function in that it inhibited both the binding of pathogenic IgM and blocked complement activation in the spinal cord.ConclusionsThis study identifies important neoepitopes expressed within the spinal cord after injury. These neoepitopes are recognized by clonally specific natural IgM Abs that activate complement and drive pathology. We demonstrate that these neoepitopes represent novel targets for the therapeutic delivery of a complement inhibitor, and possibly other payload, to the injured spinal cord.

Highlights

  • Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown

  • Since SCI shares some pathophysiological characteristics with ischemia reperfusion injury (IRI), and since IRI is driven by natural IgM Ab-mediated activation of complement in some organs [7,8,9,10], we investigated a role for natural IgM Abs in propagating SCI

  • To better understand the pathophysiology of inflammatory secondary damage following SCI, we investigated whether a similar IgM recognition system is involved in promoting secondary injury to the spinal cord after trauma

Read more

Summary

Introduction

Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. There is strong evidence that complement plays an important role in secondary SCI, and both the classical [1] and alternative [1, 2] pathways of complement activation have been implicated in propagating injury (reviewed in [3]). Since SCI shares some pathophysiological characteristics with ischemia reperfusion injury (IRI), and since IRI is driven by natural IgM Ab-mediated activation of complement in some organs [7,8,9,10], we investigated a role for natural IgM Abs in propagating SCI

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.