Abstract

Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties—that are still not completely known—of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.

Highlights

  • Diabetes mellitus (DM), as reported in the WHO 2016 global report, is a chronic disease with high incidence worldwide, creating a crucial social issue that represents one of four major noncommunicable diseases as outlined in world forums

  • The worldwide attention is focused on the development of prevention and treatment of diseases by daily consume of nutraceuticals, which can have a supportive role in preserving the life quality of the public

  • Endogenous H2 S, as a signaling molecule, can show different effects at different stages of DM, several in vitro and in vivo studies have demonstrated that H2 S donors can reduce the onset of DM and the damage it causes

Read more

Summary

Introduction

Diabetes mellitus (DM), as reported in the WHO 2016 global report, is a chronic disease with high incidence worldwide, creating a crucial social issue that represents one of four major noncommunicable diseases as outlined in world forums. The high prevalence of type 2 DM and its multiple complications highlight the requirement for further investigations aiming for the improvement of existing anti-diabetic therapeutic regimens or for the development of a new therapeutic strategy based on the current understanding of the pathophysiology and biochemical pathways of insulin resistance. In this context, natural products are a very important source of bioactive compounds acting on distinct molecular mechanisms able to affect several biochemical pathways, providing benefits in diabetic management as part of complementary and alternative therapies or as important new lead molecules for drug design [18,19]. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, attention in recent years has been shifting to the effects and properties—still not completely known—of medicinal plants as valid and inexpensive therapeutic supports lacking or almost completely devoid of side effects

Therapeutic Potential of Nutraceuticals Consumed in Type 2 DM
Scheme
H2 S-Releasing Agents for Prevention and a Therapeutic Approach in Type 2 DM
S is a physiological to beta cell lines
S donors have shown
S generation
S on r
Conclusions
Findings
S: Hydrogen sulfide

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.