Abstract

We propose a natural family of higher-order partial differential equations generalizing the second-order Klein–Gordon equation. We characterize the associated model by means of a generalized action for a scalar field, containing higher-derivative terms. The limit obtained by considering arbitrarily higher-order powers of the d’Alembertian operator leading to a formal infinite-order partial differential equation is discussed. The general model is constructed using the exponential of the d’Alembertian differential operator. The canonical energy–momentum tensor densities and field propagators are explicitly computed. We consider both homogeneous and non-homogeneous situations. The classical solutions are obtained for all cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.