Abstract

We present a class of nonsupersymmetric models in which the so-called critical Higgs inflation [Formula: see text] can be naturally realized without using specific values for Higgs and top quark masses. In these scenarios, the Standard Model (SM) vacuum stability problem, gauge coupling unification, neutrino mass generation and Higgs inflation mechanism are linked to each other. We adopt in our models Type I seesaw mechanism for neutrino masses. An appropriate choice of the Type I seesaw scale allows us to have an arbitrarily small but positive value of SM Higgs quartic coupling around the inflation scale. We present a few benchmark points where we show that the scalar spectral indices are around 0.9626 and 0.9685 for the number of [Formula: see text]-folding [Formula: see text] and [Formula: see text], respectively. The tensor-to-scalar ratios are of the order of [Formula: see text]. The running of the scalar spectral index is negative and is of the order of [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.