Abstract
Natural glucocorticoids (Gc) produced during stress have profound effects on the immune system. It is well known that Gc induce apoptosis in precursor T and B cells, markedly altering lymphopoiesis. However, it has been noted that marrow myeloid cells expanded both in proportion and absolute numbers in the mouse after Gc exposure. Mice were implanted with a corticosterone (CS) tablet that increased serum Gc and caused atrophied thymuses, both classic signs of activation of the stress axis. Blood neutrophil counts were elevated (4.8x), whereas lymphocyte counts declined. Flow cytometric analysis of the marrow revealed that the phenotypic distribution of the various major classes of cells was shifted by Gc exposure. As expected, marrow lymphocyte numbers declined >40% after 3 days of exposure to Gc. Conversely, in the myeloid compartment, both monocytes and granulocytes increased in number by >40%. Further, all granulocyte developmental stages showed large increases in both total number and percentage of cells. To investigate the functional capacity of mature granulocytes from Gc-treated mice, an improved granulocyte isolation method was developed. Gc exposure had little effect on the ability of granulocytes to produce superoxide or undergo chemotaxis or phagocytose bacteria. These results indicate that Gc treatment shifts bone marrow composition and provides evidence that granulocytes and their progenitors are selectively preserved under stressful conditions without losing function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.