Abstract

BackgroundLignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/biochemical conversion. Previously, we identified rare Populus trichocarpa natural variants with significantly reduced lignin content. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique.ResultsMean of glucan + xylan yields and the best glucan + xylan yield from rare natural poplar variants were 34 and 50 relative percent higher than the high lignin comparator (BESC-316) at the highest severity HTPH condition, respectively. The ability of HTPH to solubilize a large portion of xylan from solids led to small differences in xylan yields among poplar variants. However, HTPH showed large differences in glucan yields, and hence glucan + xylan yields, among the poplar variants. The high lignin comparator did not display lowest glucan + xylan yields with HTPH at moderate pretreatment severity compared to rare variants, but on the other hand, the low lignin comparator was a consistent top performer at all 5 process conditions. Furthermore, the low lignin comparator (GW-11012) showed a 15 absolute percent increase in glucan + xylan yield compared to the high lignin comparator at the most severe HTPH condition. Overall, relative variant rankings varied greatly with pretreatment severity, but poplar deconstruction was significantly enhanced when the pretreatment temperature was increased from 140 and 160 to 180 °C at the same pretreatment severity factor.ConclusionsGlucan yields from high severity HTPH of rare natural poplar variants with reduced lignin content were significantly higher than from the high lignin comparator. Because of the significant effect of processing conditions on the performance rankings, selection of the best performing biofuel feedstocks should be based on sugar yields tested at conditions that represent industrial practice. From a feedstock perspective, the most consistent variants, SKWE-24-2 and GW-11012, provide key insights into the genetic improvement of versatile lignocellulosic biofuels feedstock varieties.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0521-2) contains supplementary material, which is available to authorized users.

Highlights

  • Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/ biochemical conversion

  • S. cerevisiae and other yeast can realize high ethanol titers from glucose, native yeast lack the ability to anaerobically metabolize pentose, and even though strains have been developed to co-utilize xylose and glucose [21], a high cellulose content in the raw material can still be beneficial for facilitating conversion to ethanol or other products [22, 23]

  • Sugar yields from all poplar variants were higher for liquid hot water pretreatment applied at 180 °C than at 140 or 160 °C, even though the severity was held constant

Read more

Summary

Introduction

Lignin content and structure are known to affect recalcitrance of lignocellulosic biomass to chemical/ biochemical conversion. Because reduced lignin content may lower recalcitrance, 18 rare variants along with 4 comparators, and BESC standard Populus was analyzed for composition of structural carbohydrates and lignin. Sugar yields from these plants were measured at 5 process conditions: one for just enzymatic hydrolysis without pretreatment and four via our combined high-throughput hot water pretreatment and co-hydrolysis (HTPH) technique. Recent advances in linkage disequilibrium-based association genetics and quantitative trait loci (QTL) mapping have made it possible to identify genetic markers for phenotypic traits that affect biomass recalcitrance [3] These combined approaches have recently shown that some poplar varieties have naturally occurring mutations that lead to reduced lignin biosynthesis [4]. Reducing lignin content through downregulation of lignin biosynthesis enzymes in alfalfa has been previously shown to lower recalcitrance, improving sugar yields [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.