Abstract

A course of a game is formulated as a physical process that will consume free energy in the least time. Accordingly, the rate of entropy increase is the payoff function that will subsume all forms of free energy that motivate diverse decisions. Also other concepts of game theory are related to their profound physical counterparts. When the physical portrayal of behavior is mathematically analyzed, the course of a game is found to be inherently unpredictable because each move affects motives in the future. Despite the non-holonomic character of the natural process, the objective of consuming free energy in the least time will direct an extensive-form game toward a Lyapunov-stable point that satisfies the minimax theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.