Abstract

Abstract Natural frequencies of parallelogrammic plates are obtained by employing a set of beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials are generalted by using a Gram-Schmidt process, after the first member is constructed so as to satisfy all the boundary conditions of the corresponding beam problems accompanying the plate problems. The strain energy functional and kinetic energy functionals are transformed from Cartesian coordinate system to a skew coordinate system. The natural frequencies obtained by using the orthogonal polynomial functions are compared with those obtained by other methods with all four edges clamped boundary conditions and greet agreements are found between them. The natural frequencies for parallelogrammic plates with other boundary conditions, such as four edges simply supported, clamped-free and simply supported-free, are also obtained. This method is considered as a better and accurate comprehensive treatment for this type of problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.