Abstract

A free flexural vibrations of a spinning, finite Timoshenko beam for the six classical boundary conditions are analytically solved and presented for the first time. Expressions for computing natural frequencies and mode shapes are given. Numerical simulation studies show that the simply-supported beam possesses very peculiar free vibration characteristics: There exist two sets of natural frequencies corresponding to each mode shape, and the forward and backward precession mode shapes of each set coincide identically. These phenomena are not observed in beams with the other five types of boundary conditions. In these cases, the forward and backward precessions are different, implying that each natural frequency corresponds to a single mode shape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.