Abstract
Fractures in organic-rich shale affect the evolution of permeability and control shale gas preservation. We characterize fracture attributes in the Qiyue-Huaying Fold-Thrust belt in the southeastern Sichuan Basin, revealing the distribution, origin and factors controlling fracture localization through investigation of cores, image logs, and thin section petrography. We found that the deformation intensity, organic matter content and lithology are the major factors for controlling fracture occurrence and location in the Wufeng-Longmaxi deep shale. The major fracture pattern in the Fuling Block is characterized by abundant inclined shear fractures, bed-parallel shear fractures, and bed-normal extension fractures, while bed-parallel veins prevail in the Luzhou Block. In general, fracture density and size in the Fuling Block are larger than those in the Luzhou Block. The competent layers (siliceous shale with high TOC) have the highest fracture density, and noticeably, organic matter content controls bed-parallel vein localization. Based on the distribution of fractures in two blocks, we suggest that the dominant origin of fractures in organic-rich shale gradually changes from tectonic events to fluid pressure changes due to organic maturation (organic events), from the Fuling Block to the Luzhou Block.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.