Abstract

Fiber-reinforced mycelium (FRM) composites offer an innovative and sustainable approach to construction materials for architectural structures. Mycelium, the root structure of fungi, can be combined with various natural fibers (NF) to create a strong and lightweight material with environmental benefits. Incorporating NF like hemp, jute, or bamboo into the mycelium matrix enhances mechanical properties. This combination results in a composite that boasts enhanced strength, flexibility, and durability. Natural FRM composites offer sustainability through the utilization of agricultural waste, reducing the carbon footprint compared to conventional construction materials. Additionally, the lightweight yet strong nature of the resulting material makes it versatile for various construction applications, while its inherent insulation properties contribute to improved energy efficiency in buildings. Developing and adopting natural FRM composites showcases a promising step towards sustainable and eco-friendly construction materials. Ongoing research and collaboration between scientists, engineers, and the construction industry will likely lead to further improvements and expanded applications. This article provides a comprehensive analysis of the current research and applications of natural FRM composites for innovative and sustainable construction materials. Additionally, the paper reviews the mechanical properties and potential impacts of these natural FRM composites in the context of sustainable architectural construction practices. Recently, the applicability of mycelium-based materials has extended beyond their original domains of biology and mycology to architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call