Abstract

A benchmark study in structural health monitoring based on simulated structural response data was developed by the joint IASC–ASCE Task Group on Structural Health Monitoring. This benchmark study was created to facilitate a comparison of various methods employed for the health monitoring of structures. The focus of the problem is simulated acceleration response data from an analytical model of an existing physical structure. Noise in the sensors is simulated in the benchmark problem by adding a stationary, broadband signal to the responses. A structural health monitoring method for determining the location and severity of damage is developed and implemented herein. The method uses the natural excitation technique in conjunction with the eigensystem realization algorithm for identification of modal parameters, and a least squares optimization to estimate the stiffness parameters. Applying this method to both undamaged and damaged response data, a comparison of results gives indication of the location and extent of damage. This method is then applied using the structural response data generated with two different models, different excitations, and various damage patterns. The proposed method is shown to be effective for damage identification. Additionally the method is found to be relatively insensitive to the simulated sensor noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.