Abstract

The conformation of DNA that originates from association of complementary single-stranded circles (form V DNA) is investigated in solution at low salt concentration. It is shown that circular dichroism extended to the far ultraviolet region (down to 165 nm) represents a powerful tool for determination of the handedness of double helical DNAs in solution. The positive intense band at 186 nm followed by a strong negative band around 170 nm is characteristic of all right-handed helical forms ( B, A) of DNA, whereas the circular dichroism spectrum of the Z form of poly[d(G-C)] of opposite helical sense represents a quasi inversion of these far ultraviolet bands. Thus, form V DNA is found to represent a co-existence of left-handed Z-type and right-handed B double helical stretches in addition to negative superturns. The Raman spectrum of form V DNA provides further support for the contribution of a left-handed double helical conformation, as shown by comparison to the high resolution Raman spectra of poly[d(G-C)] in the Z and B forms. The analysis of present spectroscopic data and the analysis of occurrence of alternating [d(G-C)] purine-pyrimidine sequences in the form V DNA used strongly suggest that in DNA of natural sequence, topological constraint may generate left-handed double helices, a conformation thought so far to be limited to the alternating [d(G-C)] sequences. Such structure could play a role in recognition and regulation of gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call