Abstract

The unique structure of a natural nucleic acid, calf thymus DNA, which can provide an appropriate scaffold for an efficient cascaded energy transfer among organic chromophores, has been used for the generation of bright and pure white light on UV light excitation. Two most commonly used DNA stains, 4′,6-diamidino-2-phenylindole (DAPI) and ethidium bromide (EB) have been used as a part of the donor-acceptor pairs. We have judiciously selected 10-anthracene-10-yl-3-methylbenzothiazol-3-ium chloride (AnMBTZ), an ultrafast molecular rotor, to act as a bridge between DNA bound DAPI and EB for the cascaded flow of energy. The unique molecular rotor properties of AnMBTZ and its exceptional binding ability with natural DNA help to form a distinct tri-chromophoric system in DNA template which can produce bright and pure white light on UV excitation. Detailed flow of energy from photoexcited DAPI to EB via AnMBTZ has been explored using steady state and time-resolved emission spectroscopy. Further, unique binding nature of AnMBTZ with DNA molecules has been used to modulate the colour of the emission from the present tri-chromophoric system by external stimuli, like salt and temperature. Such unique stimuli responsive multi-chromophoric system in a bio-template has great potential for different lightening applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.