Abstract
Assessing the impacts of natural disturbance on the functioning of complex forest systems are imperative in the context of global change. The unprecedented rate of contemporary species extirpations, coupled with widely held expectations that future disturbance intensity will increase with warming, highlights a need to better understand how natural processes structure habitat availability in forest ecosystems. Standardised typologies of tree-related microhabitats (TreMs) have been developed to facilitate assessments of resource availability for multiple taxa. However, natural disturbance effects on TreM diversity have never been assessed. We amassed a comprehensive dataset of TreM occurrences and a concomitant 300-year disturbance history reconstruction that spanned large environmental gradients in temperate primary forests. We used nonlinear analyses to quantify relations between past disturbance parameters and contemporary patterns of TreM occurrence. Our results reveal that natural forest dynamics, characterised by fluctuating disturbance intervals and variable severity levels, maintained structurally complex landscapes rich in TreMs. Different microhabitat types developed over time in response to divergent disturbance histories. The relative abundance of alternate TreMs was maximised by unique interactions between past disturbance severity and elapsed time. Despite an unequal distribution of individual TreMs, total microhabitat diversity was maintained at constant levels, suggesting that spatially heterogeneous disturbances maintained a shifting mosaic of habitat types over the region as a whole. Our findings underscore the fundamental role of natural processes in promoting conditions that maximise biodiversity potential. Strict conservation and management systems that preserve natural disturbance outcomes, including associated biological legacies, may therefore safeguard biodiversity at large scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.