Abstract

We introduce "Natural" differential privacy (NDP)-which utilizes features of existing hardware architecture to implement differentially private computations. We show that NDP both guarantees strong bounds on privacy loss and constitutes a practical exception to no-free-lunch theorems on privacy. We describe how NDP can be efficiently implemented and how it aligns with recognized privacy principles and frameworks. We discuss the importance of formal protection guarantees and the relationship between formal and substantive protections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.