Abstract

Natural diatomite, subjected to different modifications, is investigated for hydrogen adsorption capacities at room temperature. An effective metal-modified strategy is developed to disperse platinum ( Pt ) and palladium ( Pd ) nanoparticles on the surface of diatomite. Hydrogen adsorption capacity of pristine diatomite (diatomite) is 0.463 wt.% at 2.63 MPa and 298 K, among the highest of the known sorbents, while that of acid-thermally activated diatomite (A-diatomite) could reach up to 0.833 wt.% due to the appropriate pore properties by activation. By incorporation with a small amount of Pt and Pd (~0.5 wt.%), hydrogen adsorption capacities are enhanced to 0.696 wt.% and 0.980 wt.%, respectively, indicating that activated diatomite shows interesting application in the field of hydrogen storage at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call