Abstract
Natural deep eutectic solvents (NADESs) coupled with microwave-assisted extraction (MAE) were applied to extract total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves. In this study, ten different NADESs were successfully synthesized for the MAE. Based on single-factor experiments, the response surface methodology (RSM) was applied, and the microwave power, extraction temperature, extraction time, and solid–liquid ratio were further evaluated in order to optimize the yields of total flavonoid compounds. Besides, the extracts were recovered by macroporous resin for the biological activity detection of flavonoid compounds. As a result, NADES-2, synthesized by choline chloride and malic acid (molar ratio 1:2), exhibited the highest extraction yield. After that, the NADES-2-based MAE process was optimized and the optimal conditions were as follows: microwave power of 470 W, extraction temperature of 54 °C, extraction time of 21 min, and solid–liquid ratio of 70 mg/mL. The extraction yield (40.21 ± 0.23 mg rutin equivalents/g sweet potato leaves) of the model validation experiment was demonstrated to be in accordance with the predicted value (40.49 mg rutin equivalents/g sweet potato leaves). In addition, flavonoid compounds were efficiently recovered from NADES-extracts with a high recovery yield (>85%) using AB-8 macroporous resin. The bioactivity experiments in vitro confirmed that total flavonoid compounds had good DPPH and O2−· radical-scavenging activity, as well as inhibitory effects on E. coli, S. aureus, E. carotovora, and B. subtilis. In conclusion, this study provides a green and efficient method to extract flavonoid compounds from spent sweet potato leaves, providing technical support for the development and utilization of sweet potato leaves’ waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.