Abstract

This paper explores the issue of balancing the intermediate inductor currents of a multilevel Current Source Inverter (CSI). The paper begins by identifying that single phase multicell CSI's and Flying Capacitor Voltage Source Inverters (FCVSI) form a topological dual pair. This allows the established understanding of the natural balance process of the FCVSI intermediate capacitor voltages to suggest that the intermediate inductor currents of the CSI should also settle to their target balance values when Phase Shifted Carrier (PSC)PWM is used. This concept is confirmed by full switched simulations. Next, an analytic model is developed to explore the dynamic response and robustness of the balancing process, using a Double Fourier series representation of the converter switching signals to linearise a non-linear transient circuit model. The model is verified against simulations, and predicts that the resistance of the intermediate inductors can perturb the steady state balancing point. The model further predicts that the resistance of the inductance must be small compared to the load resistance to minimise this effect. Results obtained on a five level experimental CSI precisely match the theoretical model and hence support these conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.