Abstract

Currently, there is an increased scientific interest to discover plant based drug formulations with improved therapeutic potential. Among the cornucopia of traditional medicinal plants, Curcuma longa rhizomes have been used as a powerful antibacterial and antifungal agent. However, its practical applications are limited due to its instability under thermal and UV radiation and its low bioavailability and the extensive procedures needed for isolation. This study focuses on exploring the potential of nanotechnology-based approaches to stabilize the natural curcuminoids, the major active components in turmeric without the need for its isolation, and to evaluate the release characteristics, stability and antimicrobial activity of the resulting nanohybrids. Natural curcuminoids were selectively encapsulated into nanolayers present in Mg–Al-layered double hydroxides (LDHs) using a method that avoids any isolation of the curcuminoids. The products were characterized using solid state techniques, while thermal and photo-stability were studied using thermogravimetric analysis (TGA) and UV exposure data. The morphological features were studied using scanning electron microscope (SEM) and transmission electron microscope (TEM). Drug release characteristics of the nanohybrid were quantitatively monitored under pH 3 and 5, and therapeutic potentials were assessed by using distinctive kinetic models. Finally, the antimicrobial activity of curcuminoids-LDH was tested against three bacterial and two fungal species. Powder X-ray diffraction, Fourier transform infra-red spectroscopy, SEM and TEM data confirmed the successful and selective encapsulation of curcuminoids in the LDH, while the TGA and UV exposure data suggested the stabilization of curcuminoids within the LDH matrix. The LDH demonstrated a slow and a sustained release of the curcuminoids in an acidic medium, while it was active against the three bacteria and two fungal species used in this study, suggesting its potential applications in pharmaceutical industry.Graphical abstractSynthesis of Curcuminoid-LDH by coprecipitation method and the slow release process of curcuminoids from LDH matrixElectronic supplementary materialThe online version of this article (doi:10.1186/s13065-016-0179-7) contains supplementary material, which is available to authorized users.

Highlights

  • The discovery of therapeutic potential of plant derived remedies based on traditional medicine has raised renewed interest in the development of drugs from natural sources

  • Identification of curcuminoids According to the thin layer chromatography (TLC) of turmeric powder dissolved in acetone, several spots were observed, signifying the presence of other components, such as protein, carbohydrates, fat, minerals, other than curcuminoids

  • The TLC of the de-intercalation of curcuminoids from layered double hydroxides (LDHs) shows only three spots, which represent the presence of curcumin, DMC and BDMC with RF values of 0.75, 0.55, and 0.27, respectively

Read more

Summary

Introduction

The discovery of therapeutic potential of plant derived remedies based on traditional medicine has raised renewed interest in the development of drugs from natural sources. At the range of 200–350 °C, SEC-LDH showed a complete dehydroxylation of layers, together with partial combustion of the intercalated curcuminoids at the edges or surfaces of the crystallites, approximating to a weight loss of 16.18 %. The extracted curcuminoids and SEC-LDH both showed inhibitory activity against the tested microbial species.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.