Abstract
In this paper a Multi-Frequency Excitation and Spectrogram Eddy Current System and an inverse neural model were used to detect and identify natural flaws in steam generator tubes. It is shown that the applied dynamic neural model of the ECT sensor offers very high speed of operation and guarantees reliability of the recognition results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.