Abstract

The artificial photocatalytic degradation of organic pollutants has emerged as a promising approach to purifying the water environment. The core issue of this ongoing research is to construct efficient but easily recyclable photocatalysts without quadratic harm. Here, we report an eco-friendly photocatalyst with in situ generated TiO2 quantum dots (TQDs) on natural cotton cellulose (CC) by a simple one-step hydrothermal method. The porous fine structure and abundant hydroxyl groups control the shape growth and improve the stability of nanoparticles, making natural CC suitable for TQDs. The TQDs/CC photocatalyst was synthesized without the chemical modification of the TQDs. FE-SEM and TEM results showed that 5–6 nm TQDs are uniformly decorated on the CC surface. The long-term stability in photocatalytic activity and structure of more than ten cycles directly demonstrates the stability of CC on TQDs. With larger CC sizes, TQDs are easier to recycle. The TQDs/CC photocatalysts show impressive potential in the photocatalytic degradation of anionic methyl orange (MO) dyes and cationic rhodamine B (RhB) dyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.