Abstract

PurposeThe purpose of this study is to investigate the natural convection characteristics of a reacting hybrid nanofluid in an open porous cavity bounded by vertical wavy walls subject to an inclined magnetic field.Design/methodology/approachThe physical domain of the problem is constructed using coordinate transformations, and the equations are transformed accordingly. The resulting equations are then solved using finite difference method. Numerical results for the streamlines, isotherms and isoconcentration are illustrated with varying relevant parameters.FindingsWhatever the values of parameters, streamlines have two counter-rotating cells, and their intensities are the highest near the open end. Moreover, the maximum temperature and the minimum concentration are obtained in close proximity to the open end. The strength of streamlines is increased with increasing Rayleigh number, Frank-Kamenetskii number and Darcy number, whereas it is decreased with the increment of volume fractions of nanoparticles.Research limitations/implicationsThe limitations of this study are that the model is suitable for thermal equilibrium cases and constant thermo-physical properties, while the results can predict two-dimensional flow behaviors.Originality/valueTo the best of the authors’ knowledge, there is no study on the natural convection induced by a chemical reaction in an open cavity bounded by vertical wavy walls. The findings might be used to gather knowledge about the flow, energy and reactant distributions in an open space containing a chemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.