Abstract

AbstractThis research focuses on studying the effects of heat and mass transfer convective flow passing through an infinite vertical plate embedded in porous media under radiation and chemical reaction with constant heat and mass flux. A magnetic field of strength is functional throughout the fluid region. The novelty of the present work is to examine the heat and mass transfer magnetohydrodynamics flow in the presence of thermal radiation. The equations governing the flow, heat and mass transfer are solved analytically using the perturbation technique. Expressions for velocity, temperature, concentration, skin‐friction, Nusselt, and Sherwood numbers are obtained. The influence of physical parameters on the flow domain is described graphically and in tabular form. It is found that increase in radiation parameter reduces the velocity and temperature. Moreover, internal friction of the plate decreased with increasing values of radiation parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call