Abstract
Numerical study of natural convection in a porous cavity is carried out in the present paper. Natural convection is induced when the bottom wall is heated and the top wall is cooled while the vertical walls are adiabatic. The heated wall is assumed to have spatial sinusoidal temperature variation about a constant mean value which is higher than the cold top wall temperature. The non-dimensional governing equations are derived based on the Darcy model. The effects of the amplitude of the bottom wall temperature variation and the heat source length on the natural convection in the cavity are investigated for Rayleigh number range 20–500. It is found that the average Nusselt number increases when the length of the heat source or the amplitude of the temperature variation increases. It is observed that the heat transfer per unit area of the heat source decreases by increasing the length of the heated segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.