Abstract

The aim of this study is to investigate the unsteady magnetohydrodynamic (MHD) flow of Casson nanofluid over an infinite oscillating vertical plate with ramped wall temperature. The effects of porosity, thermal radiation and first order chemical reaction have been considered. Polyethylene glycol (PEG) is chosen as base fluid which contained molybdenum disulfide (MoS2 ) nanoparticles. The Laplace transform technique is applied to the momentum, energy and concentration equations to obtain the closed form solutions. The obtained solutions are for both cases ramped and isothermal boundary conditions and compared graphically. From graphical analysis, it is observed that for isothermal plate, the magnitude of velocity, temperature and concentration profiles are greater than ramped wall temperature. Skin-friction, Nusselt number and Sherwood number are evaluated and presented in tabular forms. The effects of various embedded parameters on velocity, temperature and concentration profiles are discussed graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.