Abstract

This paper is focused on steady-state, laminar, two-dimensional natural convection in an annulus between two isothermal concentric square ducts. Stream function-vorticity formulation was applied and control volume integration solution technique is adopted in this study. Solutions are obtained up to Rayleigh number of 10 6. Three different dimension ratios, L ∗, namely 1 5 , 3 10 , and 3 5 , are considered. The effects of dimension ratio and Rayleigh number on the flow structure and heat transfer are investigated. The results show that dimension ratio and Rayleigh number have a profound influence on the temperature and flow field. As the dimension ratio is increased (decreasing the gap between squares), a multiple cell solution is developed between the upper sides of the square ducts. The transition to the multiple cell solution depends on the Rayleigh number, Ra and dimension ratio L ∗.The results of heat transfer are also presented and comparisons with earlier experimental results are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.