Abstract

Buoyancy-driven convective flow and heat transfer characteristics in a Newtonian nanoliquid-saturated porous square enclosure are analyzed numerically using a local thermal non-equilibrium model. An enclosure’s horizontal walls are considered free–free and adiabatic, and the vertical walls are free–free isothermal boundaries. The dimensionless governing equations are solved using a central finite difference scheme with second-degree accuracy, and the results are in satisfactory agreement with the earlier works. The impact of various parameters on streamlines and isotherms is analyzed and depicted graphically. The effect of Darcy number, thermal Rayleigh number, and the ratio of thermal conductivities slow down the liquid flow. The temperature distribution is maximum at sidewalls and diminishes the amount of heat transport. The opposite phenomenon is observed for the solute Rayleigh number and interphase transfer coefficient of liquid-particle phases. For large values of interphase heat transfer coefficients, liquid-solid and liquid-particle are said to be in the local thermal equilibrium phase. The amount of heat transfer increases with an increasing interphase heat transfer coefficient and the ratio of the phases’ thermal conductivities. Results of local thermal equilibrium situation can be obtained as the particular case of the study. The amount of heat transfer is maximum in the local thermal non-equilibrium situation, and enhanced by 0.09% compared with the local thermal equilibrium situation. Heat transport is 0.74% less in the sparsely packed porous medium compared with the low-porosity medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call