Abstract
A stochastic projection method (SPM) is developed for quantitative propagation of uncertainty in compressible zero-Mach-number flows. The formulation is based on a spectral representation of uncertainty using the polynomial chaos (PC) system, and on a Galerkin approach to determining the PC coefficients. Governing equations for the stochastic modes are solved using a mass-conservative projection method. The formulation incorporates a specially tailored stochastic inverse procedure for exactly satisfying the mass-conservation divergence constraints. A brief validation of the zero-Mach-number solver is first performed, based on simulations of natural convection in a closed cavity. The SPM is then applied to analyze the steady-state behavior of the heat transfer and of the velocity and temperature fields under stochastic non-Boussinesq conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.