Abstract

Natural convection heat transfer in a square cavity (with wavy or plane wall) filled with non-Newtonian power-law nanofluid has been elucidated for several input parameters like Ra spanning from 105 to 106, power-law index (n) from 0.6 to 1.4, and volume fraction of CuO nanoparticles (ϕ) from to 0 to 0.12. Effect of external magnetic field on heat transfer has been illustrated by varying the Ha from 0 to 90. In the present study, our main objective is to explore the effect of nanoparticles on heat transfer enhancement in non-Newtonian power-law fluid. It is found that the addition of nanoparticles (ϕ) to shear thinning fluid enhances the heat transfer approximately 15% when ϕ increases from 0 to 0.12 for Ha less than 60 at all Ra. For a shear thickening fluid, the same thing happens for all Ha at any Ra. The average surface Nusselt number for a cavity with wavy wall is less than that of a plane wall for all cases which is not true for the case of local Nusselt number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.