Abstract

An experimental study of natural convection heat transfer from a downward-facing horizontal circular heated surface in a water gap has been carried out. The results were correlated in different forms of Nusselt number vs Rayleigh number according to different independent variables. The effects of different characteristic length and temperature were discussed and the gap size is the preferred characteristic length, the average fluid temperature between bulk temperature and the saturated temperature is the preferred film temperature. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of Rayleigh number, or Rayleigh and Prandtl numbers both, may be used. However, the best accuracy is provided by an empirical correlation which expresses the Nusselt number as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio, the dimensionless temperature. Artificial neural networks have been trained successfully for analyzing the influences of the gap width-to-heated surface diameter ratio and the wall temperature difference between the temperature of wall and ambient fluid on natural convection heat transfer based on the experimental data in the present study. The results show that the Nusselt number will increase by increasing the gap ratio and decrease by increasing the wall temperature difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.