Abstract

This work studies the problem of the steady natural convection boundary layer flow over a downward-pointing vertical cone in porous media saturated with non-Newtonian power-law fluids under mixed thermal boundary conditions. A similarity analysis is performed, and the obtained similar equations are solved by cubic spline collocation method. The effects of the power-law viscosity index and the similarity exponent on the heat transfer characteristics under mixed thermal boundary conditions have been studied. Under mixed thermal boundary conditions, both the surface heat flux and the surface temperature are found to decrease when the power-law viscosity index of the non-Newtonian power-law fluid in porous media is increased. Moreover, an increase in the similarity exponent tends to increase the boundary layer thickness and thus decreases the surface heat flux under mixed thermal conditions. The generalized governing equations derived in this work can be applied to the cases of prescribed surface temperature and prescribed heat flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call