Abstract

Experimental investigation on natural convection heat transfer has been carried out inside vertical circular enclosures filled with Al2O3 nanofluid with different concentrations; 0.0%, 0.85% (0.21%), 1.98 (0.51%) and 2.95% (0.75%) by mass (volume). Two enclosures are used with 0.20 m inside diameter and with two different aspect ratios. The bottom surface of the enclosure is heated using a constant heat flux flexible heater while the upper surface is cooled by an ambient air stream. Various uniform heat fluxes have been used to generate the natural convection heat transfer data. The average Nusselt number is obtained and correlated with the modified Rayleigh number at each concentration ratio of the nanofluid. The average Nusselt number is obtained for each enclosure and correlated with the modified Rayleigh number using the concentration ratio as a parameter. The results show that the heat transfer coefficient increases as the concentration increases up to a specific value of the concentration and then it decreases as the concentration continues to increase compared to the basic fluid of pure water. Furthermore, a general correlation is obtained using the volume fraction and the aspect ratio as parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call