Abstract

A heat transfer and flow visualization experiment was conducted with a one-fifth scale model simulating a dry shielded canister (DSC) with 24 PWR spent fuel assemblies in order to elucidate the heat transfer characteristics and the velocity distribution for natural convection inside a DSC filled with air or water at atmospheric pressure. It was found that the average heat transfer coefficients were proportional to the one-fourth power of the Rayleigh number despite the complicated geometry inside the DSC. Flow patterns inside the DSC were visualized clearly through a digital image processing system. The velocity distributions inside the DSC were obtained quantitatively from the Particle Tracking Velocimetry. In comparison with the results of a two-dimentional thermal hydraulic analysis, computed flow patterns were similar to the experimental results and the computational temperature distributions on the sleeve surfaces agreed well with the experiments within 8%, except at the top point of the center gap. ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.