Abstract

This article presents the results of a numerical study on natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid. Two opposite walls of the enclosure are insulated and the other two walls are kept at different temperatures. The transport equations for a Newtonian fluid are solved numerically with a finite volume approach using the SIMPLE algorithm. The influence of pertinent parameters such as Rayleigh number, inclination angle, and solid volume fraction on the heat transfer characteristics of natural convection is studied. The results indicate that adding nanoparticles into pure water improves its heat transfer performance; however, there is an optimum solid volume fraction which maximises the heat transfer rate. The results also show that the inclination angle has a significant impact on the flow and temperature fields and the heat transfer performance at high Rayleigh numbers. In fact, the heat transfer rate is maximised at a specific inclination angle depending on Rayleigh number and solid volume fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.