Abstract

Numerical simulations have been conducted to study natural convection heat transfer from solid or hollow cylinders in the laminar range of Ra spanning from 104 to 108 for L/D in the range of 0.05≤(L/D)≤20. Interesting flow structures around the thin hollow cylinder have been observed for small and large L/D. It has been found that the average Nu for solid or hollow horizontal cylinders in air is marginally higher than when they are on ground for the entire range of L/D and Ra limited up to 107. Up to a Ra of 107 Nu for a solid cylinder in air is higher than that of Nu for a hollow cylinder in air but when Ra exceeds 107 Nu for a hollow cylinder is marginally higher than that of the solid cylinder until an L/D of 0.2. When, L/D rises beyond 0.2 the situation reveres causing Nu for a solid cylinder to be again higher than that of the hollow cylinder when suspended in air. A solid cylinder on ground has higher Nu compared to that of a hollow cylinder on ground up to a Ra of 106. However, for higher Ra of 108 a hollow cylinder on ground has higher Nu compared to that of a solid cylinder on ground until an L/D of 5 and after that the situation reverses again.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.