Abstract

The problem of laminar natural convection heat transfer from a horizontal cylinder with multiple, equally spaced, low conductivity baffles on its outer surface was investigated numerically. The effect of several combinations of number of baffles and baffle height on the average Nusselt number was studied over a wide range of Rayleigh numbers. The computed velocity and temperature fields were also used to calculate the local and global entropy generation for different cylinder diameters. The results showed that there was an optimal combination of a number of baffles and baffle height for minimum Nusselt number for a given value of the Rayleigh number. Short baffles slightly increased the Nusselt number at small values of the Rayleigh number. The global entropy generation increased monotonically with increasing Rayleigh number and decreased with increasing cylinder diameter, baffle height, and number of baffles. [S0022-1481(00)01203-2]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.