Abstract

Steady-state external natural convection heat transfer from interrupted rectangular vertical walls is investigated. A systematic numerical, experimental, and analytical study is conducted on the effect of adding interruptions to a vertical plate. Comsol multiphysics is used to develop a two-dimensional numerical model for investigation of fin interruption effects on natural convection. A custom-designed testbed is built and six interrupted wall samples are machined from aluminum. An effective length is introduced for calculating the natural convection heat transfer from interrupted vertical walls. Performing an asymptotic analysis and using a blending technique, a new compact relationship is proposed for the Nusselt number. Our results show that adding interruptions to a vertical wall can enhance heat transfer rate up to 16% and reduce the weight of the fins, which in turn, lead to lower manufacturing and material costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.