Abstract

The problem of laminar natural convection from a vertical circular cone maintained at either a uniform surface temperature or a uniform surface heat flux, and placed in a thermally stratified medium is considered. The governing non‐similarity boundary layer equation for uniform surface temperature are analyzed by using two distinct solution methodologies; namely, (i) a finite difference method and (ii) a local non‐similarity method. For uniform surface heat flux case, the solutions of the governing non‐similarity boundary layer equations are obtained by using three distinct solution methodologies, namely, (i) a finite difference method, (ii) a series solution method and (iii) an asymptotic solution method. The solutions are presented in terms of local skin‐friction and local Nusselt number for different values of Prandtl number and are displayed graphically. Effects of variations in the Prandtl number and stratification parameter on the velocity and temperature profiles are also shown graphically. Solutions obtained by finite difference method are compared with the other methods and found to be in excellent agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call