Abstract

The steady natural convection boundary layer flow of a viscoelastic fluid over a solid sphere with constant heat flux is studied in this paper. The boundary layer equations of viscoelastic fluid are an order higher than those for the Newtonian (viscous) fluid. The adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non–dimensional form by using special dimensionless variables and then solved by using an implicit finite difference scheme known as Keller box method. Numerical results for the velocity and temperature profiles, wall temperature, as well as skin friction are shown graphically for different values of viscoelastic parameters and Prandtl number. It is found that, when the viscoelastic parameter increased, the values of skin friction decreased while the values of wall temperature are increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.