Abstract
Combined heat transfer characteristics were obtained numerically for three-dimensional natural convection and thermal radiation in a long and wide vertical porous layer with a hexagonal honeycomb core. We assumed that the porous layer was both homogeneous and isotropic. The pure Darcy law for fluid flow and Rosseland's approximation for radiation were used. The numerical methodology was based on an algebraic coordinate transformation technique and the transformed governing equations were solved using the SIMPLE algorithm. The effect of radiation on the heat transfer characteristics was investigated over a wide range of radiation numbers and temperature ratios for two Darcy-Rayleigh number values (Ra* = 100 and 1000) and for a fixed aspect ratio of H/L = 1. The results are presented in the form of combined radiation and convection heat transfer coefficients and are compared with the corresponding values for pure natural convection. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 278–294, 1999
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.