Abstract

A meso-scale front-tracking model (FTM) of nonequilibrium binary alloy dendritic solidification has been extended to incorporate Kurz, Giovanola, and Trivedi (KGT) dendrite kinetics and a Scheil solidification path. Model validation via comparison with thermocouple measurements from a solidification experiment, in which natural convection is limited by design, is presented. Via solution of the flow field due to natural thermal buoyancy, it is shown that resultant liquid-phase convection creates conditions in which equiaxed solidification is favored. Comparison with simulations in which casting solidification is diffusion controlled show that natural convection has greatest effect at intermediate times, but that at early and late stages of columnar solidification, the differences are relatively small. It is, however, during the time of greatest divergence between the simulations that the authors’ predictive index for equiaxed zone formation is enhanced most by convection. Finally, the columnar-to-equiaxed transition is directly simulated, in directional solidification controlled by diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.