Abstract

A computational approach for the modelling of combined gas radiation and laminar natural convection heat transfer within a rectangular enclosure is presented. One wall among the others is maintained at a constant higher temperature (Th) while the others are of a constant lower temperature (Tc). The discrete-ordinate method (DOM) through S12 directions is applied to resolve the radiative transport equation (RTE) while the 'statistical narrow band correlated-k' (SNBCK) model is adopted to provide gas radiative properties. The effect of radiative contribution, the enclosure tilt angle, the boundary and geometry conditions are presented. Special attention is given to the effect scales of these parameters on the average Nusselt numbers. The results show that radiative effect remarkably contributes to the acceleration of the vortexes, improving heat exchanges at walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call