Abstract

Experiments were performed to measure the heat transfer coefficient on the surface of a square flush heat source mounted at the center of an FR-4 plate in a small horizontal enclosure. The plate area was six times larger than the heat source area. Four cases were considered: the plate facing upwards and downwards, and the backside either insulated or convecting. The heat transfer coefficients exhibited distinct behavior at high aspect ratio in which the dominant length scales were related to the source. At intermediate aspect ratios, the length scales of both the source and the enclosure were relevant, and at small aspect ratios a conduction limit was observed. The heat transfer coefficients at high aspect ratios exceeded the prior correlations by 14 percent for upward facing isolated plates when the ratio of heat source area to perimeter was used as the significant length scale, but the dependence on Ra1/4 was consistent. For the downward facing case, the data exceeded the values for a uniformly heated isolated plate by 68 percent. Classical correlations for shallow differentially heated horizontal enclosures were not satisfactory in describing the dependence on enclosure height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.