Abstract
Emotions are described as strong feelings that are expressed by an individual in response to reactions to something or someone. Emotions are a very important aspect of day-to-day life interaction. Research shows that more than 90% of communication will happen non-verbally. This paper presents human emotion detection using a fuzzy relational model. The model consists of an image processing stage followed by an emotion recognition phase. The authors additionally made sub-categories in the most important expressions like happy and sad to discover the level of happiness and sadness in one face. Feature extraction along with multi-learning approach will help to test whether the person is truly happy or appearing to be happy. Experimental outcomes on the image dataset point out the accurate performance of the proposed technique. The experiment gives good accuracy results with the authors' own data set and robust with reference to some latest and leading edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Natural Computing Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.