Abstract

We describe a unified picture of symmetry-breaking electronic interactions that are usually described as "pseudo-Jahn-Teller (PJT) effects" and attributed to vibronic coupling but can also be associated with hyperconjugative donor-acceptor interactions in the framework of natural bond orbital (NBO) and natural resonance theory (NRT) analysis. We show how NBO/NRT descriptors offer a simplified alternative to the vibronic coupling picture of PJT effects that yields both improved cause-effect specificity and chemically enriched understanding of symmetry-breaking phenomena but with no necessary input from ground-state vibrational or excited-state electronic properties. Comparative NBO/NRT vs vibronic coupling analyses of PJT effects are illustrated for two well-known cases: trans-bending in Si2H4 and higher Group-14 homologues of ethylene and chain-kinking in cyclopentadienylideneketene (C5H4CCO) and related cumulene ketones. The conceptual and practical advantages of the NBO-based hyperconjugative approach may be expected to extend to numerous PJT-type symmetry-breaking phenomena throughout the chemical sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.