Abstract

Black-box attacks in deep reinforcement learning usually retrain substitute policies to mimic behaviors of target policies as well as craft adversarial examples, and attack the target policies with these transferable adversarial examples. However, the transferability of adversarial examples is not always guaranteed. Moreover, current methods of crafting adversarial examples only utilize simple pixel space metrics which neglect semantics in the whole images, and thus generate unnatural adversarial examples. To address these problems, we propose an advRL-GAN framework to directly generate semantically natural adversarial examples in the black-box setting, bypassing the transferability requirement of adversarial examples. It formalizes the black-box attack as a reinforcement learning (RL) agent, which explores natural and aggressive adversarial examples with generative adversarial networks and the feedback of target agents. To the best of our knowledge, it is the first RL-based adversarial attack on a deep RL agent. Experimental results on multiple environments demonstrate the effectiveness of advRL-GAN in terms of reward reductions and magnitudes of perturbations, and validate the sparse and targeted property of adversarial perturbations through visualization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.