Abstract

Matrigel, a mouse sarcoma-derived extract, is considered the gold standard for organoid cultures. However, it has several drawbacks, including inconsistent and ill-defined composition, varying quality between batches, and potential cancer-related health risks. These factors highlight the need to develop chemically defined alternatives to Matrigel. Natural biopolymers derived from living organisms have emerged as promising substitutes capable of creating chemically defined extracellular matrix (ECM)-mimicking materials to support organoids in a 3-dimensional (3D) environment. This article provides an overview of natural biopolymeric hydrogel-based bioengineering approaches for constructing 3D matrices resembling artificial ECM for organoid cultures. It discusses the latest developments in utilizing natural biopolymers to direct the growth, differentiation, and maturation of organoids, along with their translational applications in the fields of bioengineering and biomedicine. Additionally, the article offers perspectives on multidisciplinary research on natural biopolymer-based hydrogels for more practical applications as next-generation matrices for organoid cultures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call