Abstract

The multicell converter topology is said to possess a natural voltage balancing property. This paper is the first of a two-part series in which multicell converters are modelled for the general case of p-cells. This paper focuses on the development of the natural balancing theory for the two-cell case. An understanding of the two-cell case is fundamental to understanding the general balancing theory. The switching functions used in switching these converters are mathematically analyzed. Equivalent circuits are derived and presented. The switching and balancing properties of these converters are mathematically analyzed. The main conclusion of the analysis is that the natural balancing of these converters are influenced by three factors namely, the harmonic content of the reference waveform, the switching frequency and the load impedance. Mathematical tools are presented that can help designers to predict if balancing problems would occur for a particular set of operating conditions. As a result of the detailed understanding of the balancing mechanism that is gained through this theory it is shown that by adding a balance booster, the load impedance can be manipulated to improve the natural balancing of the converter. Simulation results are included to verify the presented balance theory and properties

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call