Abstract

Current research focuses on the effects of nanomaterials on the human reproductive system. Nanostructures can cross the epithelial and blood-testicular barriers and pose risks to the reproductive organs. Oxidative stress has been proposed as a possible mechanism of reproductive toxicity caused by nanomaterials. Dietary curcumin could be a therapeutic drug for nanomaterial-induced reproductive toxicity. Studies on effect of commonly used nickel (II) oxide nanoparticle (NiO NPs) on male reproductive organs and their attenuation by natural antioxidant curcumin is scarce. This work intended to study the attenuating potential of curcumin against NiO NPs-induced toxicity in mouse spermatogonia GC-1 spg cells. Plausible mechanisms of alleviating effect curcumin against NiO induced reproductive toxicity was explored through oxidative stress pathway. NiO NPs was synthesized via chemical co-precipitation route and characterized by SEM, TEM, and XRD. NiO NPs was found to induce dose-dependent cytotoxicity in GC-1 spg cells (10–320 µg/ml for 24 h) whereas curcumin did not exert any effect in concentration range of 1–80 µg/ml. Interestingly, cytotoxic response of NiO NPs in GC-1 spg cells was significantly attenuated by curcumin. The higher expression of caspase-3 gene and loss of mitochondrial membrane potential after treatment with NiO NPs were effectively alleviated by curcumin. The increase in intracellular pro-oxidant levels (hydrogen peroxide, malondialdehyde, and reactive oxygen species) after exposure to NiO NPs was also mitigated by curcumin. Moreover, glutathione depletion and lower activity of several antioxidant enzymes (GPx, SOD, and CAT) after NiO NPs were further almost reverted by curcumin. We believe, this is the first preliminary study showing that NiO NPs induced cytotoxicity in mouse spermatogonia cells was mitigated by curcumin via oxidative stress. The therapeutic effect of dietary antioxidant curcumin against nanomaterial-induced reproductive toxicity is warranted further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.